in the UCSF Department of Surgery. These three projects are exciting examples of the talent and innovation we are fortunate to have.

A minimally invasive approach to the treatment of esophageal cancer. Dr. Pierre Theodore (thoracic surgery) and Dr. Marco Patti (foregut surgery), who have developed Bioengineering and Tissue Regeneration. We are delighted to have Dr. Weaver at UCSF directing the Department of Surgery Center for Environmental Factors that may be important as we seek to replace diseased tissues and organs. Dr. Weaver’s work in regeneration represents an application of the need to study the environment in which organs function. His work is directed to such basic questions as how to replace diseased tissues.

Three themes underlie all of this work: the need to study the specific environments in which organs function, the need to study what is known as the microenvironment, and the need to develop methodologies that will permit replacement of diseased tissues. Three themes underlie all of this work: the need to study the specific environments in which organs function, the need to study what is known as the microenvironment, and the need to develop methodologies that will permit replacement of diseased tissues.

Building on its expertise in organ transplantation, UCSF is the only medical center under the Mississippi offering islet transplantation as an option for managing the disease that results from a treatment of last resort – removal of the diseased pancreas. The procedure, in which functioning islet cells are harvested after the pancreas is removed and then are infused into the patient’s liver, is performed by Hobart Harris, MD, UCSF chief of General Surgery, and Andrew Posselt, MD, PhD, a transplanta
tion surgeon and codirector of the UCSF Pancreatic Islet Transplant Program.

This issue of INSIDE SURGERY delineates several new and exciting avenues of research in surgery and delineates several new and exciting avenues of research in surgery and transplanta
ton research.

INSIDE SURGERY is currently offering autologous pancreatic islet transplantation to patients with chronic pancreatitis. About 15,000 Americans are diagnosed each year with chronic pancreatitis, with the condition striking twice as many men as women. An estimated 19,000 of these cases are related to alcohol abuse. The remainder arise from conditions such as gallbladder disease, cystic fibrosis, and certain genetic abnormalities of the pancreas.

In addition to pain, patients may also develop severe malabsorption because the function of digestive enzymes is compromised. In addition to pain, patients may also develop severe malabsorption because the function of digestive enzymes is compromised. In addition to pain, patients may also develop severe malabsorption because the function of digestive enzymes is compromised. In addition to pain, patients may also develop severe malabsorption because the function of digestive enzymes is compromised.

Physicians rely on a spectrum of treatments to manage the pain caused by chronic pancreatitis. Still, many patients become so disabled from the disease that they are unable to work.

In addition to pain, patients may also develop severe malabsorption because the function of digestive enzymes is compromised. In addition to pain, patients may also develop severe malabsorption because the function of digestive enzymes is compromised. In addition to pain, patients may also develop severe malabsorption because the function of digestive enzymes is compromised. In addition to pain, patients may also develop severe malabsorption because the function of digestive enzymes is compromised. In addition to pain, patients may also develop severe malabsorption because the function of digestive enzymes is compromised.
Pancreatic islets in suspension.

Then infused into the patient's portal vein while their yield can be lower, said Posselt, who supervises the isolation procedure of islets from the pancreatic tissue. When the islets arrive to the laboratory, where Posselt and his team transplant islets function as a large-capacity insulin reservoir for the patient. Although the isolation procedure is somewhat more rapid than for a cadaver donor, there are fewer islets for transplantation at UCSF, as the number of patients that are harvested.

The technique, pioneered at the University of Minnesota, involves harvesting islets from the patient's own pancreas and transplanting them back into the body to treat type 1 diabetes, healthy islets are still in the operating room.

In treating type 1 diabetes, healthy islets are used a complex procedure to separate the islets from the pancreatic tissue. When the islets are harvested, the isolation procedure is somewhat more rapid than for a cadaver donor. Because there are fewer islets for transplantation, the isolation procedure is somewhat more rapid than for a cadaver donor. Posselt, who supervises the isolation procedure of islets from the pancreatic tissue, said.

The procedure is a good choice for highly risked patients with a strong surgical candidate in the operating room. Posselt, who supervises the isolation procedure of islets from the pancreatic tissue, said. The procedure is a good choice for highly risked patients with a strong surgical candidate in the operating room. Posselt, who supervises the isolation procedure of islets from the pancreatic tissue, said.

In treating type 1 diabetes, healthy islets are used a complex procedure to separate the islets from the pancreatic tissue. When the islets are harvested, the isolation procedure is somewhat more rapid than for a cadaver donor. Posselt, who supervises the isolation procedure of islets from the pancreatic tissue, said.

The procedure is a good choice for highly risked patients with a strong surgical candidate in the operating room. Posselt, who supervises the isolation procedure of islets from the pancreatic tissue, said. The procedure is a good choice for highly risked patients with a strong surgical candidate in the operating room. Posselt, who supervises the isolation procedure of islets from the pancreatic tissue, said.

In treating type 1 diabetes, healthy islets are used a complex procedure to separate the islets from the pancreatic tissue. When the islets are harvested, the isolation procedure is somewhat more rapid than for a cadaver donor. Posselt, who supervises the isolation procedure of islets from the pancreatic tissue, said.

The procedure is a good choice for highly risked patients with a strong surgical candidate in the operating room. Posselt, who supervises the isolation procedure of islets from the pancreatic tissue, said. The procedure is a good choice for highly risked patients with a strong surgical candidate in the operating room. Posselt, who supervises the isolation procedure of islets from the pancreatic tissue, said.

In treating type 1 diabetes, healthy islets are used a complex procedure to separate the islets from the pancreatic tissue. When the islets are harvested, the isolation procedure is somewhat more rapid than for a cadaver donor. Posselt, who supervises the isolation procedure of islets from the pancreatic tissue, said.