Department of Surgery »  Faculty »  Vascular Surgery »  Robert Raffai, Ph.D.

Robert Raffai, Ph.D.

Associate Professor of Surgery
Division of Vascular and Endovascular Surgery

Contact Information

SFVAMC (112G)
4150 Clement Street
San Francisco, CA 9412
Phone: (415) 750-2115
Fax: (415) 750-2181
Robert.Raffai@ucsf.edu
Open Popup
  • 1986-90, McGill University Faculty of Medicine, Canada, B.Sc., Biochemistry
  • 1990-93, University of Montreal, Canada, Other, Biochemistry
  • 1993-98, University of Ottawa, Canada, Ph.D., Biochemistry
  • 1997-01, J. David Gladstone Institutes, Postdoctoral Fellow, Mouse Models of Human Disease
  • 2001-04, J. David Gladstone Institutes, Postdoctoral Fellow, Mouse Models of Human Disease

Dr. Raffai earned a PhD in immunobiology of apolipoproteins and antibody engineering within the Lipoprotein Research Group at the University of Ottawa Heart Institute in 1998. He subsequently trained extensively in lipoprotein metabolism and atherosclerosis research as a postdoctoral fellow at the J. David Gladstone Institutes with Dr. Karl H. Weisgraber. He subsequently established a research program focused on exploring the biology of atherosclerosis within the Department of Surgery at UCSF and the VA Medical Center in San Francisco. He is currently Associate Professor of Surgery and Director of the Atherosclerosis Research Laboratory. Dr. Raffai's research program focusses on elucidating the interplay between metabolism and inflammation in atherosclerosis cardiovascular disease and heart failure. Through studies of mouse models developed in his laboratory, Dr. Raffai's team uncovered new pathways through which a protein called ApoE participates in suppressing the progression and in enhancing the regression of atherosclerosis. Their discovery linked ApoE metabolism to microRNA-control of immune cell activation and protection from atherosclerosis in mice with hyperlipidemia. The laboratory now explores how apoE expression in macrophages contributes to the regulated release of non-coding RNA including microRNA into exosomes that can be communicated to cells at a distance to influence inflammation and atherosclerosis. The lab also explores the role of apoE in altering the microRNA composition of plasma lipoproteins that can also serve as a source of extracellular communication. A  more recent topic in the lab include to explore how diabetic hyperglycemia alters the biogenesis and regulated release of microRNA in exosomes derived from myeloid cells, and how these exRNA can serve to enhance systemic and vascular inflammation and atherosclerosis. Our goal is to uncover mechanism through which to prevent microRNA dysregulation in myeloid cells of diabetic mice and to infuse exRNA as novel treatments for diabetic atherosclerosis. Dr. Raffai has trained four postdoctoral fellows and numerous college graduate students in the study of lipoprotein metabolism and immune cell regulation of atherosclerosis.

Most recent publications from a total of 24
  1. Cheung KH, Keerthikumar S, Roncaglia P, Subramanian SL, Roth ME, Samuel M, Anand S, Gangoda L, Gould S, Alexander R, Galas D, Gerstein MB, Hill AF, Kitchen RR, Lötvall J, Patel T, Procaccini DC, Quesenberry P, Rozowsky J, Raffai RL, Shypitsyna A, Su AI, Théry C, Vickers K, Wauben MH, Mathivanan S, Milosavljevic A, Laurent LC. Extending gene ontology in the context of extracellular RNA and vesicle communication. J Biomed Semantics. 2016; 7:19. View in PubMed
  2. Luk FS, Kim RY, Li K, Ching D, Wong DK, Joshi SK, Imhof I, Honbo N, Hoover H, Zhu BQ, Lovett DH, Karliner JS, Raffai RL. Immunosuppression With FTY720 Reverses Cardiac Dysfunction in Hypomorphic ApoE Mice Deficient in SR-BI Expression That Survive Myocardial Infarction Caused by Coronary Atherosclerosis. J Cardiovasc Pharmacol. 2016 Jan; 67(1):47-56. View in PubMed
  3. Patton JG, Franklin JL, Weaver AM, Vickers K, Zhang B, Coffey RJ, Ansel KM, Blelloch R, Goga A, Huang B, L'Etoille N, Raffai RL, Lai CP, Krichevsky AM, Mateescu B, Greiner VJ, Hunter C, Voinnet O, McManus MT. Biogenesis, delivery, and function of extracellular RNA. J Extracell Vesicles. 2015; 4:27494. View in PubMed
  4. Laurent LC, Abdel-Mageed AB, Adelson PD, Arango J, Balaj L, Breakefield X, Carlson E, Carter BS, Cavaller BM, Chen CC, Cocucci E, Danielson K, Courtright A, Das S, Abd Elmageed ZY, Enderle D, Ezrin A, Ferrer M, Freedman J, Galas D, Gandhi R, Huentelman MJ, Van Keuren-Jensen K, Kalani Y, Kim Y, Krichevsky AM, Lai C, Lal-Nag M, Laurent CD, Leonardo T, Li F, Malenica I, Mondal D, Nejad P, Patel T, Raffai RL, Rubio R, Skog J, Spetzler R, Sun J, Tanriverdi K, Vickers K, Wang L, Wang Y, Wei Z, Weiner HL, Wong D, Yan IK, Yeri A, Gould S. Meeting report: discussions and preliminary findings on extracellular RNA measurement methods from laboratories in the NIH Extracellular RNA Communication Consortium. J Extracell Vesicles. 2015; 4:26533. View in PubMed
  5. Li K, Ching D, Luk FS, Raffai RL. Apolipoprotein E Enhances MicroRNA-146a in Monocytes and Macrophages to Suppress Nuclear Factor-?B-Driven Inflammation and Atherosclerosis. Circ Res. 2015 Jun 19; 117(1):e1-e11. View in PubMed
  6. Mattis AN, Song G, Hitchner K, Kim RY, Lee AY, Sharma AD, Malato Y, McManus MT, Esau CC, Koller E, Koliwad S, Lim LP, Maher JJ, Raffai RL, Willenbring H. A screen in mice uncovers repression of lipoprotein lipase by microRNA-29a as a mechanism for lipid distribution away from the liver. Hepatology. 2015 Jan; 61(1):141-52. View in PubMed
  7. Wang G, Kim RY, Imhof I, Honbo N, Luk FS, Li K, Kumar N, Zhu BQ, Eberlé D, Ching D, Karliner JS, Raffai RL. The immunosuppressant FTY720 prolongs survival in a mouse model of diet-induced coronary atherosclerosis and myocardial infarction. J Cardiovasc Pharmacol. 2014 Feb; 63(2):132-43. View in PubMed
  8. Gaudreault N, Kumar N, Olivas VR, Eberlé D, Stephens K, Raffai RL. Hyperglycemia impairs atherosclerosis regression in mice. Am J Pathol. 2013 Dec; 183(6):1981-92. View in PubMed
  9. Lovett DH, Mahimkar R, Raffai RL, Cape L, Zhu BQ, Jin ZQ, Baker AJ, Karliner JS. N-terminal truncated intracellular matrix metalloproteinase-2 induces cardiomyocyte hypertrophy, inflammation and systolic heart failure. PLoS One. 2013; 8(7):e68154. View in PubMed
  10. Eberlé D, Luk FS, Kim RY, Olivas VR, Kumar N, Posada JM, Li K, Gaudreault N, Rapp JH, Raffai RL. Inducible ApoE gene repair in hypomorphic ApoE mice deficient in the low-density lipoprotein receptor promotes atheroma stabilization with a human-like lipoprotein profile. Arterioscler Thromb Vasc Biol. 2013 Aug; 33(8):1759-67. View in PubMed
  11. View All Publications
Publications provided by UCSF Profiles, powered by CTSI at UCSF. View profile of Robert Raffai, Ph.D.
Please note: UCSF Profiles publications are automatically derived from MEDLINE/PubMed and other sources, which might result in incorrect or missing publications. Researchers can login to make corrections and additions, or contact CTSI for help.

X